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Abstract

Proper quantitative characterization of microstructures, for the purpose of modeling the effective properties, is
discussed. This is a broad subject that covers different physical properties (elastic, conductive, transport, etc.), as well as
various types of microstructures. The present work focuses on microstructures that can be characterized as continuous
matrices containing isolated inhomogeneities of diverse shapes, properties and orientations. We address their proper
quantitative characterization in the context of elastic and conductive properties (transport and fracture-related prop-
erties are also briefly discussed).

Proper microstructural parameters must correctly represent the individual inhomogeneity contributions to the
considered property. They may differ for different physical properties. The key problem is to identify the mentioned
individual contributions. For the elastic properties, we demonstrate, on a number of microstructures, how the proper
parameters are implied by the elastic potential. Relative importance of various “irregularity factors” (shape irregu-
larities, orientation scatter) is analyzed.

We discuss similarities and differences between microstructural parameters intended for different physical properties.
The possibility of explicit cross-property connections between two physical properties depends on whether the proper
microstructural parameters for these two properties are sufficiently similar. We outline such explicit connections be-
tween the elastic and the conductive properties.

The micromechanical approach is compared with the one based on an a priori introduced ‘““fabric” tensors and general
tensor representations that contain a number of uncertain factors. Various problems arising in this context are discussed.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction and overview

We discuss materials that can be described as continuous matrices containing multiple isolated inho-
mogeneities of diverse shapes and orientations (cracks, pores, foreign particles). The problem addressed
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here is their proper quantitative characterization in the context of effective properties. This means identifi-
cation of the proper microstructural parameters, in whose terms the physical property of interest is to be
expressed. The focus here is on the elastic and the conductive properties; we also briefly discuss fluid
permeability for one class of microstructures, and the issue of proper parameters for brittle—elastic fracture.

The proper microstructural parameters are generally different for different physical properties. If they are
sufficiently similar for a certain pair of physical properties, this leads to explicit cross-property connections
between the two properties (see Section 8 of the present work).

The proper microstructural parameters should represent the individual inhomogeneities in accordance
with their contributions to the physical property considered—otherwise, the property cannot be uniquely
expressed in their terms. For example, the crack density parameters, that are proper for the effective
elasticity/conductivity, take the individual contributions of crack-like pores proportionally to the crack
radii cubed (or squared, in 2-D case); pore openings, that may be small but finite, are ignored. However, for
the fluid permeability, these openings are of importance, and the crack density parameter should be revised
accordingly.

Thus, identification of the proper microstructural parameters hinges on the analysis of an individual
inhomogeneity contribution to the considered property. This is a challenging task: it involves analyses of
various shape factors, since inhomogeneities in realistic microstructures may have diverse and “‘irregular”
shapes; in anisotropic cases of non-random inhomogeneity orientations, the parameters are tensor ones; if
the matrix itself is anisotropic, this further complicates the analysis. Nevertheless, a substantial progress has
been made in this direction. It is overviewed in Sections 4 and 5.

The advantages of such an approach—that we call “micromechanical”’—are that

e It identifies microstructural features that have a dominant effect on the given property. This leads to
quantitative characterization of microstructures, in the context of this property.

e The results cover, in a unified way, mixtures of inhomogeneities of diverse shapes and orientations (that
are typical for realistic microstructures).

o It leads to explicit cross-property connections between different physical properties, if they are expressed
in terms of similar microstructural parameters (elasticity—conductivity connections, for example).

An alternative approach, that attempts to bypass difficulties of the micromechanical analyses, is based
on introduction of the so-called “fabric’ tensors. It is simply claimed that a tensor (or tensors) of a certain
postulated rank is an appropriate characterization of microstructure. This “fabric” tensor is not explicitly
linked to the microstructure (or linked in a way that is not based on micromechanical analysis and hence is
not unique; it may not properly reflect “relative weights” of various microstructural elements). The effective
properties (usually, the elastic ones) are given through general tensor representations that contain a sub-
stantial number of uncertain factors. The price paid for bypassing micromechanical analyses is the emer-
gence of the mentioned factors and the fact that the effective properties are not explicitly linked to relevant
microstructural features (or the linkage is not unique). This approach is discussed in Section 8.

2. The micromechanical approach. Proper microstructural parameters

A proper microstructural parameters should represent microstructural features in accordance with their
actual contributions to the property. This approach—based on individual inhomogeneity contributions to
the property—is called “micromechanical” in the present paper.

The micromechanical approach is rooted in a number of classical works. Mackenzie (1950) considered
effective elastic properties of a solid with spherical pores, on the basis of individual pore contributions to
the overall compliance. Kroner (1958) analyzed the isotropic matrix with anisotropic inhomogeneities of
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spherical shapes, and operated with a sphere contribution to the overall property. Hill (1965) considered
ellipsoidal inhomogeneities and expressed their contributions to the overall elasticity using Eshelby’s results
(1957, 1961). Dependencies on the shapes of ellipsoids were worked out in detail by Wu (1966). In the work
of Walpole (1969), results were given in a more transparent form and, in the important case of the
spheroids, were derived in elementary functions. In the important case of cracks, their contributions to the
overall elasticity and conductivity were given by Bristow (1960). A thorough overview of history of the
basic ideas of micromechanics was given by Markov (2000).

Remark. A choice of a particular approximate scheme for the overall property—the self-consistent
approximation (Hill, 1965; Budiansky, 1965) or other schemes (differential, Mori-Tanaka’s)—is non-
essential in this context, since they based on placing non-interacting inhomogeneities in a certain “effective
environment’.

To start the discussion, we overview several well known microstructural parameters and the basic
underlying logic. For the ellipsoidal inhomogeneities of identical shapes (Hill, 1965) the simplest micro-
structural parameter—uvolume fraction of inhomogeneities

clVZVi (1)

(V is a representative volume element, RVE) is, obviously, adequate, since the overall properties can be
expressed in its terms (with the shape factor as a multiplier).

For cracks, their concentration is represented by crack density parameters. For circular randomly ori-
ented cracks (of radii a'), the scalar crack density is (Bristow, 1960):

1 ; 1 . :
— (53 in 2- — (2 (@)
p= E a <1n 2-D case, p = y E a"’”, crack lengths are 2a ) (2)

i

in accordance with the fact that the individual crack contributions to the overall compliance are propor-
tional to their sizes cubed (squared, in 2-D case).

For non-random crack orientations (n is a unit normal to a crack), the scalar crack density was gen-
eralized to second rank crack density tensor in the work of Kachanov (1980)

o= % Z(cfnn)i (in 2-D case, & = % Z(a%m)') (3)

i i

(nn is the dyadic product—tensor with components n;n;) where the fourth rank tensor
1 .
7 Z(cfnnnn)' (4)

was also identified as a second (in addition to ) crack density parameter, and was shown to play a relatively
minor role (provided crack faces are traction free).

The present work focuses on materials that can be described as matrices with inhomogeneities. However,
we also mention two microstructures of a different kind for which proper microstructural parameters were
identified in classical works.

Continuous distribution of dislocations is described by dislocation density tensor a introduced by Nye
(1953). It relates, to an area element ndS, the total Burgers’ vector db of the dislocation lines crossing this
element: db = a - ndS. Tensor a is the proper micromechanical parameter because the field of microstresses
generated by a continuous distribution of dislocations—the quantity for which « is intended—can be ex-
pressed in its terms (Kroner, 1960).
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Microstructural characterization of a granular material for conductivity (thermal or electric). For a
granular material consisting of spheres of radius R and non-conducting intergranular space, the effective
conductivity (in the isotropic case) was expressed by Batchelor and O’Brien (1977) in terms of parameter
¢NR~'/S where ¢ is the volume fraction of spheres, N is the number of contacts per sphere and S is the
contact area. This parameter is proper because the product R~!v/S correctly represents the contribution of
an individual contact to the overall conductivity.

We return now to the main focus of the present work—matrices with inhomogeneities. Microstructural
parameters (1)—(3) have certain limitations. Indeed, the volume fraction parameter (1) may become inad-
equate in the following cases:

e Mixtures of inhomogeneities of diverse shapes. The proper microstructural parameters become non-triv-
ial, even in relatively simple cases. This is illustrated by the 2-D example of randomly oriented elliptical
holes (see the next section). “Irregularity’ of shapes further complicates the matter.

e Non-randomly oriented inhomogeneities. The proper parameters are tensor, their rank being a non-trivial
matter.

The crack density parameters (2) and (3) may become inadequate in the following cases:

e Non-planar cracks.

e Cracks that are not traction free, such as sliding cracks constrained against the normal opening—case
relevant to the compressive stress conditions (in this case, fourth rank tensor (4) starts to play a major
role) or fluid-filled cracks (for which tensor (4) has to be modified, as outlined in Section 4).

For planar non-circular cracks, with non-circularities that are random (uncorrelated with crack sizes and
orientations), second rank crack density tensor a« remains adequate (as indicated by experimental data on
cracked rocks, Sayers and Kachanov, 1995). In particular, for the elliptical cracks, as well as for the cracks
of annular geometry (containing ““islands” of partial contact in the middle), radii @’ of equivalent circular
cracks can be explicitly expressed in terms of crack geometries (Kachanov, 1992; Sevostianov and
Kachanov, 2002b).

Broadening materials science applications increasingly address more complex microstructures—both
man-made and naturally occurring. Examples are: cortical bone (several systems of pores of diverse
geometries and orientations); various sprayed materials (strongly oblate, crack-like pores, mixed with pores
of more or less round shapes); various reinforced composites that, in addition to embedded inhomoge-
neities, may develop microcracks or micropores; geological materials.

In such cases, identification of the proper microstructural parameters is a non-trivial problem.
It appears unavoidable, though: in order to explicitly express the effective properties in terms of
microstructural parameters, these parameters should correctly represent relevant microstructural
features.

Remark. For some simple microstructures of fixed microgeometries, the simplest scalar microstructural
parameters—porosity, crack density—may be sufficient. For example, for two families of spheroids of
diverse properties, all of them strictly parallel, the effective properties can be expressed in terms of their
partial volume fractions (Taya and Chou, 1981). As another example, for several families of strictly parallel
circular cracks, the effective properties can be expressed in terms of the partial scalar crack densities, plus
angles between the families (Piau, 1980). The limitation of such expressions is that they are restricted to the
particular geometries considered. If, for instance, an orientation scatter is introduced into examples above,
the concentration parameters should become tensor.

In literature, much attention has been paid to construction of various approximate schemes for the
dependencies
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effective property = f | microstructural parameter (5)

?

However, the problem of identifying the argument of this function has received much less attention.

Identification of the proper microstructural parameters is most challenging in the context of the elastic
properties, and this is the focus of the present work. In this context, we assume that the solid is subjected to
“remotely imposed” stress ¢ that, in the absence of inhomogeneities, would have been uniform within
representative volume V' (homogeneous boundary conditions, Hashin, 1983).

Remark. The effective properties considered here are linear elastic. This may present a limitation in the
case of compressive loading applied to a solid with narrow, crack-like pores: the linear elasticity results are
applicable if the pores are not closed by compressive stresses, as determined by the magnitude of com-
pressive stresses in relation to the initial pore opening (pores of the ellipsoidal shapes close at once, as the
critical stress is reached; non-ellipsoidal pores close gradually as compressive stress increases, see, for
example, results of Mavko and Nur (1978) for 2-D oblate non-elliptical pores).

The problem of effective elastic properties is best formulated in terms of elastic potential in stresses f'(a),

the effective compliances S;;; being obtained by differentiation: &;; = S;x0 = 9f /00;;. Representing f'(o) as
a sum
f=h+Af (6)

where fj is the potential in the absence of inhomogeneities, we reduce the problem to finding the change of
potential Af due to inhomogeneities. Further, we represent Af as a sum of terms corresponding to indi-
vidual inhomogeneities

Af:ZAfi:%a:ZHi:a (7)

where H' is a fourth rank compliance contribution tensor of i-th inhomogeneity. Treating an inhomogeneity
as an isolated one allows one to calculate H-tensors for a number of 2-D and 3-D shapes (Kachanov et al.,
1994; Sevostianov and Kachanov, 2002a). These results serve as a basic building block for the non-inter-
action approximation, as well as for a number of approximate schemes (self-consistent, differential, Mori-
Tanaka’s) that place an inhomogeneity into some sort of effective homogenized environment.

Remark. Although the formulations in potentials and in compliances are equivalent, the potentials
formulation has the advantage that the structure of potential Af identifies the proper microstructural
parameters: the sum

> H (8)

(subject to symmetrization implied by potential (7)) is the general expression for the proper microstructural
parameter.

The advantage of the general form (8) is that it covers, in a unified way, various mixtures of inhomo-
geneities of diverse shapes and orientations. Various forms taken by this sum and possible simplifications
(notably, the possibility to replace it by second rank tensors) are discussed in Section 4.

Remark. In the work of Johannesson and Pedersen (1998), it was suggested to average Eshelby’s tensor
(rather than H-tensors) over orientations. That Eshelby’s tensor is not the quantity to be averaged, is seen
from the isotropic case of random orientations: in this case, the averaged Eshelby’s tensor is isotropic and
coincides with the one for a certain concentration of spheres. However, the effective elastic properties may
differ substantially from those of a material with spheres: it is generally impossible to match both effective
isotropic constants by a certain distribution of spheres (see a simple 2-D example of randomly oriented



314 M. Kachanov, I. Sevostianov | International Journal of Solids and Structures 42 (2005) 309-336

elliptical holes, Section 4 and Kachanov et al. (1994) for a more general discussion). In other words,
averaged Eshelby’s tensor is not a proper microstructural parameter.
Thus, identification of micromechanically based parameters involves the following two steps:

¢ Finding the contribution of one isolated inhomogeneity to the property considered. In cases of irregu-
larly shaped inhomogeneities or anisotropic matrices, this is a challenging problem.

e Summation over inhomogeneities (can be replaced by integration over orientations or over shape fac-
tors, if computationally convenient).

3. Microstructural parameters are rooted in the non-interaction approximation

The individual inhomogeneity contributions to the overall property are affected by interactions between
them. Consider, for example, an elastic solid with parallel circular cracks of radius a that are either (A)
coplanar or (B) stacked. In case (A), crack contributions to the overall compliance in the normal direction
depend on a stronger than &® (amplifying interactions); in case (B)—weaker than a* (shielding interactions).

Strictly speaking, interactions should be incorporated into the proper microstructural parameter, since it
should correctly reflect “relative weights” of individual inhomogeneities. The effective property would then
be a linear function of such a parameter. The latter would depend on mutual positions of inhomogeneities
and would reflect the interaction mechanics.

Such an approach—incorporating interactions into a microstructural parameter—may not be practical
in general. However, it may be realized in some cases. For illustration, we outline one such possibility for a
material with interacting cracks. Assuming that the average displacement discontinuity on a crack (that
determines the contribution of a crack to the overall compliance) is proportional to the average traction on
it—usually, a good approximation—crack interactions can be accounted for by a simple method suggested
by Kachanov (1987) and incorporated into the crack density parameter, as follows. We introduce A-factors
that characterize interactions between cracks in the “average” sense: second rank tensor A gives the
average traction vector generated along the site of jth crack (in a continuous material) by a uniform unit
traction of an arbitrary direction on ith crack. Calculation of A-factors reduces to integration of elementary
functions—fields generated by uniformly loaded cracks—along crack surfaces (lines, in 2-D).

The A-factors characterize those features of the crack array geometry that produce a dominant effect on
interactions. The proper crack density parameter can be expressed in their terms. In the 2-D case of rec-
tilinear cracks, this yields elastic potential in the form

Af = (n/Ey)o:w: 6 9)

where fourth rank tensor

1 N
_ 1 )2,k ki) i
o= ;k 1"“n" Q" n (10)

emerges as the proper crack density parameter that accounts for interactions; it contains second rank tensor
Q" = 5,1 — A")]"". This scheme can be extended to the 3-D case of circular cracks. If the interactions are
neglected, Q%) = 0,1 sothat 6 : w : 6 = 6 - 6 : @ and potential in terms of crack density tensor a, given by
(3), is recovered.

Crack density parameter o incorporates those features of the crack array geometry that are relevant
to the interaction mechanics. Note that potential Af and, hence, the effective compliances are linear in
o. Parameter o is defined for a deterministic crack array; an appropriate statistical averaging would
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be needed, to incorporate the statistical information of cracks. This is a non-trivial task (particularly in
3-D).

Generally, incorporating interactions into the concentration parameter may not be a practical ap-
proach—it amounts to solving the interaction problem. Therefore, microstructural parameters usually
ignore the interactions, and contributions of individual inhomogeneities are taken by treating them as
isolated ones (in particular, the parameters do not reflect the mutual positions of inhomogeneities). The
effect of interactions on the effective properties is then addressed through a non-linear dependence of the
property on the parameter—the one that is defined in the non-interaction approximation.

Although this approach is more practical, it has certain limitations:

e The effective property is, generally, a non-unique function of a microstructural parameter (with the
exception of the non-interaction approximation). This may be acceptable if sufficiently narrow bounds
can be constructed for this function—which is not always the case (cracks, or strongly oblate pores are
examples).

e An attempt to incorporate the statistics of mutual positions of inhomogeneities, while retaining the
microstructural parameter that does not reflect them, may or may not be realizable. Consider, for exam-
ple, a periodic arrangement of diverse inhomogeneities (diverse shapes or orientations). It is not clear, a
priori, whether the effective properties can be represented in terms of the product (usual microstructural
parameter, rooted in the non-interaction approximation) X (periodicity parameter).

The present work focuses on the microstructural parameters rooted in the non-interaction approxi-
mation (obtained by summing the contributions of individual inhomogeneities—treated as isolated ones—
to overall property). They are rigorously proper for the non-interaction approximation, as well as for a
number of approximate schemes (self-consistent, differential, Mori-Tanaka’s) that place an inhomogeneity
into an effective homogenized environment.

In this framework, the main challenge is to properly incorporate shapes and orientations of the inho-
mogeneities. This will produce microstructural parameters that cover, in a unified way, mixtures of diverse
inhomogeneities.

4. Elastic solids with various inhomogeneities: proper microstructural parameters and effective properties

The proper microstructural parameters will be identified, in a systematic way, through the structure of
the elastic potential Af. (As discussed above, the parameters are rooted in the non-interaction approxi-
mation, hence, Af" will be given in this approximation.) The proper parameters may be non-trivial, even in
the cases of overall isotropy. This is best illustrated by a 2-D case of randomly oriented elliptical holes. We
demonstrate the benefits gained by identifying the proper parameters—in particular, clarification of the
overall anisotropy and of the importance of various microstructural features.

Representative volume is denoted by 7 and representative area (in 2-D case)—Dby 4.

4.1. Two-dimensional solid with rectilinear cracks

Denoting crack lengths by 24’ and unit normals to cracks by n' the strain per representative area 4 has
the form

1 1 i
— ¢0. in i
=S .o-+2 E,- 5(bn+nb)2a (11)

Ag
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where the sum (over all cracks in A4) is the extra strain Ae due to cracks; this sum may be replaced by
integration over orientations, if computationally convenient; S° is the compliance tensor of the bulk
material. Vector b = (u" — u™) is the average displacement discontinuity on a crack. Representation (11), as
well as its extension to pores, in terms of surface integrals over the pore boundaries [(un + nu)dsS, is an
immediate consequence of a footnote remark of Hill (1963); in the explicit form, it was given, for example,
by Vavakin and Salganik (1975).

The following fact is of a key importance: for each crack, vector b is parallel to n- ¢

b=—n-o (12)

where Ej is 2-D Young’s modulus (that coincide with 3-D one for plane stress and, for plane strain, can be
obtained from 3-D one by dividing it over (1 —v?) where v is 3-D Poisson’s ratio). This follows from
equality of crack compliances in the normal and shear modes: if p and 7 are uniform normal and shear
tractions applied to crack faces, then the corresponding average displacement discontinuities are

b, | _malp
br}_EO{T (13)

with the same proportionality coefficient na/E.
The proportionality (12) implies that the change of elastic potential Af due to multiple cracks of diverse
orientations and sizes is

1 1 ) o T 1 .

Af:EG:As:Z Zn’ -6 b l:E_O(G.G) :ZZ(aznn)' :E—(a~a) o (14)
thus identifying the crack density tensor (3) as the proper parameter of crack density. We emphasize that
tensor « is not introduced a priori, but is implied by the structure of Af.

Tensor « is a natural generalization of the scalar crack density p. Its linear invariant tra = p; for ran-
domly oriented cracks & = (1/2)pl, where I is the unit tensor.

For any particular fixed orientation distribution of cracks, the effective compliances can be found, of
course, without using a—in terms of the overall scalar crack density p plus parameters of this specific
distribution. The advantage of using tensor « is that it yields a unified result with respect to all orientation
distributions. For example, in the case of a preferential orientation with some scatter, the latter is incor-
porated in a.

Another advantage of using « is that it identifies the overall anisotropy due to cracks: it is orthotropy (its
principal axes being coaxial to the ones of a), since a is a symmetric second rank tensor. This result is not
trivial and may even seem counterintuitive, since it applies to any orientation distribution of cracks (for
example, to two families of parallel cracks inclined at an arbitrary angle to each other). Moreover, the
orthotropy is of a rather special type—the number of independent elastic constants is reduced and their
orientation dependence is simplified (Kachanov, 1980).

The possibility to characterize an arbitrary field of cracks by a symmetric second rank tensor a, without
involving tensors of higher ranks, is due to equality of the normal and shear crack compliances (13).
Therefore, the possibility to retain « as the sole crack density parameter in more complex situations (3-D
cracks, sliding closed cracks, fluid-filled cracks) depends on whether this equality continues to hold. If it is
violated, a fourth rank tensor may emerge as a second (in addition to a) crack density parameter. Its
importance (more precisely, the value of a factor at the term containing this tensor) depends on the extent
of the violation. This is illustrated by the examples to follow.
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4.2. Three-dimensional solid with cracks

For a circular (penny shaped) crack, of radius a, the normal and the shear compliances are not equal.
However, they are relatively close, differing by a factor of 1 — vy /2 (v, is Poisson’s ratio of the matrix). This
yield the following expression for Af (Kachanov, 1980):

16(1 —v?2 v 1 ;

Af:ﬁ (6-0) :oc—ioa:—Z(rfnnnn)':a (15)
thus identifying the fourth rank tensor (1/V)Y (a’nnnn)’ as a second (in addition to a) crack density
parameter. However, its overall impact is, typically, relatively small, due to a relatively small multiplier v,/2
at the second term. It can be made even smaller by assigning the same (average) value to both the normal
and the shear crack compliances. Thus, retaining a as the sole crack density parameter constitutes a good
approximation.

Cracks of the elliptical shape can be well approximated, in their impact on Af, by certain equivalent
circular cracks, provided the deviations from circularity are random, i.e. not correlated with crack sizes and
orientations (see results of Kachanov, 1992 based on calculations of Budiansky and O’Connell, 1976). For
cracks of general irregular shapes (with random irregularities), experimental data on anisotropic wave
patterns in cracked rocks indicates that the normal and the shear crack compliances are, on average, quite
close (Sayers and Kachanov, 1995). Therefore, characterization of such crack arrays solely by the second
rank tensor a constitutes a good approximation.

4.3. Three-dimensional solid with sliding cracks constrained against the normal opening (“closed” cracks)

In this case (relevant for the compressive loading conditions), the equality of normal/shear compli-
ances (13) is, obviously violated—the normal compliance is zero. Here, we consider frictionless (“lubri-
cated”) cracks, so that potential Af exists (results for a more general case of frictional sliding, involving
stress induced anisotropy and loading path-dependence, were given by Kachanov (1982a,b)). Then po-
tential

_le(1 - v?)

Af 32—-V)E

(6 -0) :a—a:%Z(ﬁnnnnﬂa) (16)

i

has the same form as (15), but without the small factor of v,/2 at the second term. Hence, contributions of a
and fourth rank tensor (4) are comparable and both tensors should be retained as crack density parameters.
This, obviously, violates the overall orthotropy.

4.4. Fluid-filled crack-like pores (strongly oblate spheroids)

We consider the “undrained” case (fluid mass in each pore remains constant during deformation). The
presence of fluid does not affect the shear crack compliances (assuming no viscosity), whereas the normal
crack compliances are reduced.

For a crack with the initial (prior to loading) average aspect ratio &, the impact of the fluid on the
effective elastic response depends on the dimensionless parameter 6 = kEy& (it is similar to the one intro-
duced by Budiansky and O’Connell (1976)), where « is the fluid compressibility. The impact of the fluid
increases as ¢ decreases. For different cracks, &’s and, therefore, 6’s may be different.
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Potential Af has the form (Kachanov, 1994):

1 24vd "
(mo-):oz—o-:;Z(mannnn) .G] (17)

O 16(1 —vp)
Af a 3(2 — V())OE()

It covers, in a unified way, various mixtures of crack-like pores of diverse aspect ratios and orientations.
The limit of 6’ — 0 corresponds to closed sliding (frictionless) cracks (17); the opposite limit of §' — oo
corresponds to “dry” freely opening cracks (15).

Thus, the structure of the elastic potential identifies fourth rank tensor

1 2+ vd '
7 zl: (2(?—_‘_05)a3nnnn) (18)
as a second (in addition to a) crack density parameter. This parameter—that is not easily identifiable
without the micromechanical analysis—reflects the fact that the individual contributions of crack-like pores
depend on their aspect ratios. This is in contrast with “dry’’ cracks, where, for strongly oblate shapes there
is no such dependence.

Only in the case when aspect ratios are identical for all cracks, a common multiplier (1 4 v¢6/2)/(1 + 9)
can be taken out of the sum as a parameter. This case (considered by Budiansky and O’Connell, 1976; Piau,
1980) seems to be of a limited applicability, though—crack aspect ratios (small but finite) may be as diverse
as the crack radii.

Remark. The above results can be further extended to general ellipsoidal pores filled with compressible
fluid (Shafiro and Kachanov, 1997).

4.5. Anisotropic two-dimensional solid with cracks of arbitrary orientations

Analyses of Mauge and Kachanov (1994b) and Tsukrov and Kachanov (2000) show that, for a 2-D
orthotropic material with arbitrarily oriented cracks,

Af:a:%Z(aann)i 6 (19)

where B is a symmetric second rank crack opening displacement tensor (or COD tensor of a crack), that
relates (normalized) vector b = b/a of the average displacement discontinuity to the vector of uniform
traction ¢ of an arbitrary direction applied on the crack:

b=B-t (20)

For the isotropic matrix, B = (n/E,)I recovering collinearity (12) of b and ¢. For the orthotropic matrix,
C C

B:%(1+D)e1e1+%(1—D)e2e2 (21)

where

1 \/E] + \/Ez 1 2V12 2
D = (WE, — VE))/(VE, + VE,): c=-Y"L_ ¥z j_ =&
(VE, 2)/(VE + VE); 2 VEE, G, E + E.E,

and E|, E,, G5, vi» are Young’s and shear moduli and Poisson’s ratio of the matrix in the principal axes of
orthotropy x;x,. Thus, B is independent of a crack orientation n (the deviation from collinearity of vectors ¢
and b is the same for cracks of all orientations). This, somewhat unexpected, constancy of B allows one to
transform the potential (19) to the form
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Af:(a-B~0'):%Z(dznn)i:(o"B-a):a (22)

identifying, again, second rank crack density tensor a as the sole crack density parameter.

Without the micromechanical analysis, it would be difficult to foresee the result (22) and sufficiency of a:
they follow from a (somewhat unexpected) independence of B on crack orientation n. Whether this
independence holds for the 3-D anisotropic material with cracks, or for a 2-D material with anisotropy
more complex than orthotropy, remains an open question. If it does not hold, reduction to a is not possible,
and one would have to revert to fourth rank tensor (1/V) > (a*nBn)' as the proper crack density parameter.

Additional insights implied by (22) are as follows:

e Stress ¢ enters (22) through o - B - ¢ (rather than through ¢ - 6, as in the case of the isotropic matrix).
Hence, not only the crack orientations n with respect to ¢ matter (they enter through crack density tensor
a), but, also, their orientations with respect to the matrix orthotropy axes. For example, a crack normal
to the “stiffer”” direction of the matrix produces a larger contribution to the overall compliance than a
crack of the same size normal to the “softer” direction.

o Of the four independent elastic constants of a 2-D orthotropic matrix, only two combinations of them, C
and D, enter potential Af.

e Since D is independent of the shear modulus Gy,, for a matrix of cubic symmetry (E; = E,, but Gy, is an
independent constant), B-tensor is proportional to I, i.e. the normal and the shear crack compliances are
equal—as for the isotropic matrix.

4.6. Two-dimensional isotropic matrix with elliptical holes

This is an important example: it demonstrates that, even in a relatively simple special case of isotropy
(randomly oriented ellipses), the proper microstructural parameters are non-trivial.

We consider a mixture of elliptical holes of diverse eccentricities and orientations; 2a and 2b are ellipses’
axes and m, n—unit vectors along them, correspondingly. In the general anisotropic case (arbitrary ori-
entation distribution), potential Af, given by Tsukrov and Kachanov (2000) and Kachanov et al. (1994),
has the form

Af:ﬁ 26 :6— (tre)’)p+2(c - 6) : B} (23)
where
p= %n Z(ab)i (2-D porosity)
" (24)

1 i .
B= " Z(aan + b*mm)’  (second rank hole density tensor)

thus identifying (p, B) as the proper microstructural parameters. In the limit of cracks (all 5 = 0), p = 0 and
tensor f/7 reduces to the crack density tensor a. Note that no degeneracies or indeterminate ratios emerge
in this limit. In the case of circles (a' = b"), p = pI (I is 2-D unit tensor) thus identifying porosity p as the
sole microstructural parameter. The general representation (23) covers all mixtures of diverse ellipses in a
unified way (for example, a mixture of circular holes and cracks).

Proper concentration parameters are non-trivial even in the isotropic case of randomly oriented ellipses.
In this case, = (1/4)(n/2) > (a®> + b*)'I and the structure of Af implies that parameters (p, ) can be
replaced by two scalars: p and the average eccentricity
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q= %nZ(ai — by (25)

In the limit of cracks, ¢/z reduces to the conventional crack density (2).
A further non-trivial result pertaining to this case is that two effective elastic moduli—for example,
Young’s modulus and bulk modulus—are expressed in terms of different combinations of (p,q):

Ey KO(I — VO)

Ee = 5 eff —
" 143p+g T T-w+2ptg

(26)
where 2-D elastic moduli £, and vy coincide with 3-D ones for plane stress; in the case of plane strain, E,
and v are obtained from 3-D ones by dividing them over (1 —v?) and (1 — v), respectively, where v is 3-D
Poisson’s ratio. Two-dimensional bulk modulus K| is related to 2-D E; and vy by Ky = Eo/(2 — 2vp). This
has an interesting implication: if one wants to plot E.; and K.y in terms of a single microstructural
parameter, this parameter will be different for the two moduli (3p + ¢ and 2p + ¢, correspondingly).

4.7. Two-dimensional orthotropic matrix with elliptical holes of arbitrary orientations

This problem unifies the two cases considered above—the isotropic matrix with elliptical holes and the
orthotropic matrix with cracks. In this case (Tsukrov and Kachanov, 2000), the proper concentration
parameter > H' can be specified as to explicitly reflect ellipses’ geometries and the matrix anisotropy. This
yields some non-trivial insights. For example, the effect of circular holes is anisotropic (the potential Af is
anisotropic); the compliance contribution of the elliptical hole can be represented as a sum of compliances
of a circular hole and two cracks.

4.8. Three-dimensional solid with ellipsoidal inhomogeneities

For the ellipsoids of diverse shapes and orientations, H-tensors that enter the proper parameter of
inhomogeneities’ concentration ) . H' can be expressed in terms of inhomogeneities’ Eshelby’s tensors s;;:
V* * 0 \—1 0 -1
Hijkl = ? [(Sijkl - Sijkl) + Cijmn(‘]m”kl - Smnkl)} (27)
where Jix = (0401 + 010x;)/2 is the fourth rank unit tensor, Cjj,, and S, are stiffness and compliance
tensors, correspondingly. The properties of the inclusion and of the matrix are denoted by an asterisk and
by “0”, respectively.
We note that a tensor that is dual to the compliance contribution tensor H can be introduced—a stiffness
contribution tensor N that enters the change (due to inhomogeneities) in the elastic potential in strains g(s):

L
g:g0+Ag:g0+§8:ZN:8 (28)

Tensor N of an inhomogeneity is related to Eshelby’s tensor as follows:

V.
V
In the case of small concentration of inhomogeneities, the two potentials, f(¢) and g(¢), yield the same
effective elastic constants. In the case of finite concentration, there appears to be no rigorous criterion for
preferring one of the two potentials to the other. A seemingly reasonable suggestion is as follows: the choice
between potentials is made in such a way as to ensure that its change, Af or Ag, due to inhomogeneities is a
positive definite function (of ¢ or &, correspondingly). For pores, for example, potential f(¢) and H-tensors
are to be used, whereas for rigid inclusions the choice is g(¢) and N-tensors. This recipe would be a sufficient

Niju = [(Ci*jk/ - C?jkl)_l + Sl'./'mnSr(zmkl]_l (29)
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(although not a necessary) condition for the entire potential (f = fo + Af or g = gy + Ag) to remain po-
sitive definite for any approximate scheme based on ‘““one-particle’” approximation (self-consistent, differ-
ential, Mori-Tanaka’s).

In the case of identical shapes and random orientations, the general tensor parameter > H' can be
replaced simply by a volume fraction (Hill, 1965), with the shape factor as a multiplier; in the case of two
families of spheroids (of two different shapes), all of them parallel, it can be replaced by partial volume
fractions, with shape factors as multipliers (Taya and Chou, 1981). A somewhat surprising simplification is
possible for the spheroidal shapes (of arbitrary distribution over orientations and aspect ratios), as outlined
in the text to follow.

4.9. Inhomogeneities of the spheroidal shapes

An unexpected simplification is possible for spheroids (as compared to general ellipsoids): for an arbi-
trary mixture of spheroids of diverse aspect ratios and orientations, the general fourth rank tensor
parameter > H' can be replaced, with some approximation, by a symmetric second rank tensor. More
precisely, terms ¢ : > H' : ¢ in potential Af can be replaced by terms of the form o -6 : 2 where Q is a
certain second rank tensor.

The accuracy of this approximation is generally good for pores (Shafiro and Kachanov, 1999).
For spheroids of different elastic properties, the accuracy is good in most cases, although it worsens
considerably for the case when contrast (with the matrix) in the bulk moduli is very different from the one
for the shear moduli (Sevostianov and Kachanov, 2002a). The possibility of such a replacement has
important consequences of physical character: (1) it implies the overall orthotropy (for any orientation
distribution), and (2) it makes it possible to establish explicit elasticity—conductivity cross-property con-
nections.

4.10. Pores of strongly oblate shapes (aspect ratios smaller than 0.10-0.15)

Such pores are frequent in many microstructures (rocks and sprayed coatings being examples). The
key result is that their effect on the elastic and conductive properties is very close to the one of
cracks. Therefore, they can be replaced by cracks and characterized by the crack density parameters. An
important consequence is that porosity is an irrelevant parameter for such microstructures. Yet another
implication concerns processing of microphotographical data: information on pore aspect ratios is
unnecessary.

5. Inhomogeneities of irregular shapes

Being frequent in actual microstructures, such inhomogeneities do not always resemble ellipsoids, even
approximately. This calls for analyses of relative importance of various “irregularity factors”. This difficult,
and largely incomplete, task needs both the theoretical guidance and numerical studies.

5.1. Applications of Hill's theorem

One of the basic theoretical tools is given by the comparison (or “auxiliary’’) theorem of Hill (1965). He
formulated it in energy terms; we rephrase it here in terms of compliances/stiffnesses. The theorem focuses
on changes in the effective properties of a material with inhomogeneities caused by replacing their shapes by
the inscribed/circumscribed ones.
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In the context of matrices with inhomogeneities, the theorem’s statement is as follows. Let C°, $° and
C*, §” be stiffness/compliance tensors of the matrix and of the inhomogeneities, correspondingly (both,
generally, anisotropic), and w—the space occupied by all inhomogeneities. To be specific, we assume that
the material of inhomogeneities is ‘softer’ than the one of the matrix; more precisely, that eigenvalues of the
6% 6 matrix S;,, — Sy, are non-negative (or, equivalently, that eigenvalues of the matrix Cj,, — C}),, are non-
positive). Let us enlarge @ (some of the inhomogeneities are replaced by circumscribed ones). Then the
effective properties become ‘softer’: eigenvalues of the change ASf/f,fl are non-negative. The opposite
inequality signs will hold, of course, if @ is shrunk (some of the inhomogeneities are replaced by inscribed
ones).

Remark. In the case when the matrix and the inhomogeneities have the same type of elastic anisotropy
and their anisotropy axes coincide, non-negative eigenvalues of the difference in the compliance tensor
S* — 8" imply that eigenvalues of S* > eigenvalues of S° (with a similar statement for the stiffness
tensor).

In the isotropic case (both the matrix and the inhomogeneities are isotropic and inhomogeneity shapes/
orientation distribution are such that the overall properties are isotropic), assuming, for example, for the
shear and bulk moduli, that p,pomogencity < Mmatrixs Kinhomogeneity > Kmatrix Hill’s theorem implies that
enlargement of inhomogeneities results in decrease of u.; and increase in Keg.

Taking the “comparison” circumscribed/inscribed shapes as ellipsoids generates bounds that can be
explicitly calculated. The bounds are tight in the important case of irregularly shaped inhomogeneities of
the strongly oblate type, since the compliance/stiffness contribution tensors of strongly oblate ellipsoids are
only weakly dependent on the aspect ratio, In general, however, the bounds formed by ellipsoids may be
wide and hence less useful (particularly in the case of strongly concave shapes).

A further step in using Hill’s theorem can be suggested as follows. The space in-between the original
shape and the circumscribed/inscribed ellipsoids is filled with smaller ellipsoids, with their contributions
subtracted/added. However, as demonstrated on cracks of irregular shapes, the resulting narrowing of the
bounds may be only moderate (Sevostianov and Kachanov, 2002b), due to a strong effect of the remaining
ligaments.

Hill’s theorem has useful implications of general character:

e Slight “jaggedness” of inhomogeneity boundaries can be ignored, as far as the effective properties are
concerned. (In case of crack-like pores, “jaggedness” is unimportant only if does not produce contacts
between crack faces, say, under compressive loading.)

e It is unimportant whether “‘corner” points of inhomogeneities are sharp or blunted, since this difference
can be tightly bounded.

e The difference between the convex and the concave shapes (of the same volume) cannot be tightly
bounded and may, in fact, have a strong effect on the contribution to the effective properties (as illus-
trated by 2-D calculations on convex vs concave polygons by Kachanov et al., 1994).

5.2. “Islands” of partial contacts between crack faces

Such “islands’ are common, for example, in sprayed coatings. They produce a very strong effect even if
the “islands” are very small: their presence reduces the compliance contribution of a crack quite drastically
(several times).

The “islands” factor can be accounted for in the framework of the usual crack density parameters (2)
and (3) by reducing the “effective” crack radii. Importantly, the effects of ““islands” on the elastic and on the
conductive properties are very close (this implies that their presence does not affect the cross-property
connections, Sevostianov, 2003).
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Fig. 1. Influence of various ““irregularity factors” on the elastic and conductive properties.

The discussion of this section is summarized in Fig. 1.

6. Proper microstructural parameters are different for different physical properties

As discussed above, the proper microstructural parameters represent individual inhomogeneities in
accordance with their contributions to the physical property considered. For different properties, these
contributions may be different. Therefore, the proper microstructural parameters will, generally, be dif-
ferent. The preceding section discussed proper parameters for the elastic properties. We now discuss this
problem in the context of conductive, transport and fracture-related properties.

6.1. Effective conductive properties (thermal or electric)

Proper quantitative characterization of a microstructure in the context of conductivity is somewhat
similar, but not identical to the one for elasticity. The following results should be mentioned (they are

summarized in Fig. 2).
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PROPER PARAMETERS OF CONCENTRATION OF INHOMOGENEITIES
FOR THE ELASTIC AND THE CONDUCTIVE PROPERTIES

PROPER PARAMETERS OF CONCENTRATION OF INHOMOGENEITIES
FOR THE ELASTIC AND THE CONDUCTIVE PROPERTIES (continuation)
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Fig. 2. Proper microstructural parameters for various microstructures.

For a 3-D material containing non-conducting cracks (or strongly oblate pores, with aspect ratios smal-
ler than 0.10-0.15), second rank crack density tensor « is the sole proper crack density parameter (no
fourth rank tensor emerges, in contrast with the elasticity problem).

“Islands” of partial contacts between the crack faces produce the effect on the conductive properties that
is very close to the one for the elastic properties (Sevostianov, 2003). Therefore, adjustments to the crack
density tensor a, via reducing the “effective” crack radii, are very close for these two properties.

The effect of ellipsoidal inhomogeneities on the conductive properties is characterized by a second rank
symmetric tensor, with components explicitly linked to ellipsoid’s characteristics (Sevostianov and Ka-
chanov, 2002a).

Estimates of the role of various “irregularity factors” (“jagged” boundaries, etc.), that follow from Hill’s
comparison theorem are similar to the ones for the elasticity problem, as outlined by Zohdi et al. (1999).
Namely, let Kg and K,i. be the conductivity tensors of the matrix and of the inhomogeneities and w—the
region occupied by inhomogeneities. We assume, to be specific, that the material of inhomogeneities is
more conductive (in the sense that eigenvalues of Kl.lj. — Kg are non-negative). Then, enlargement of inho-
mogeneities leads to non-negative eigenvalues of the change AKfiff. If both the matrix and the inhomo-
geneities are isotropic (although the overall conductivity may be anisotropic, due to anisotropy of the
inhomogeneity shapes), then enlargement of inhomogeneities leads to non-negative change in the effec-
tive conductivity in any direction. Similar conclusions, with opposite inequality signs, would apply to the
resistivity tensors.
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Fig. 3. For the conductive properties, any isotropic mixture of diverse inhomogeneities is equivalent to a certain volume fraction of
spheres. This equivalence does not hold for the elastic properties.
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The differences between the proper parameters to be used for the elastic and for the conductive prop-
erties are best seen in the case of overall isotropy (Fig. 3). For conductivity, the effect of inhomogeneities (on
one effective constant) is characterized by one microstructural parameter (that reduces to volume fraction,
for the spherical shapes, to crack density, for cracks, and reflects a certain average shape, in the case of
mixtures). This means that any isotropic mixture of diverse shapes is equivalent, in its effect on conduc-
tivity, to a certain volume fraction of spheres. For elasticity, there is no such equivalence, since the effect of
inhomogeneities (on two effective elastic constants) is characterized by rwo parameters. This is best illus-
trated by the example of elliptical holes (Section 4.6) where these two parameters are p and ¢ (porosity and
average eccentricity); matching one of the two elastic constants by an appropriate concentration of circles
would leave the other constant unmatched.

6.2. Effective transport properties

In the problem of fluid filtration through a porous/cracked media, the issues of interconnectedness and
percolation are of primary importance. Therefore, volume average parameters, like (1)—(3), are, generally,
insufficient (see books of Adler and Thovert, 1999; Torquato, 2002 for recent reviews).

However, such volume average characterization is sufficient for one class of microstructures that occur in
rock materials, and it is different from the one used in the context of elastic/conductive properties. We consider
fluid filtration through a system of planar fissures (with unit normals »’) that fully intersect representative
volume V. We assume that the usual Darcy’s law governs filtration, i.e. the overall flow is proportional to
the applied pressure gradient Vp. In the general anisotropic case (non-randomly oriented fissures),

1
q:*pKVp (30)

where ¢ is the overall filtration rate, p is the viscosity coeflicient and K is a symmetric second rank per-
meability tensor. Assuming that the “background” permeability in the absence of fissures is isotropic (equal
to koI), we aim at expressing the change of permeability due to cracks K — koI as a function of the proper
microstructural parameter.

It is usually assumed that permeability due to several families of fissures is a simple superposition of the
individual permeabilities, the underlying assumption being that energy losses at intersections can be ne-
glected (Wittke, 1990). This implies that a-type tensor that sums up the individual fissure contributions, is
adequate.

However, tensor «, as defined by (3), should be substantially modified, to account for the fact that,
according to the hydrodynamics laws, the contribution of a given fissure to v is proportional to its area S
and to its width w cubed (in contrast with the elastic properties, where such a contribution is independent of
the width and is proportional to $*?). This leads to the following proper microstructural parameter:
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y= % Z(Sw3nn)(i) (31)

i

Its identification readily yields the effective permeability K — koI in terms of y. Indeed, K — kol is the
isotropic function of y (if both Vp and y undergo a certain orthogonal transformation, say, rotation, then ¢
undergoes the same transformation). Then Cayley-Hamilton theorem implies that K — kI is a tensorly
quadratic polynomial in y—a combination of 1, y and y - y, with coefficients—functions of invariants of y.
Since ¢ is a sum of the individual fissure contributions, the polynomial should be linearized in y. Finally, we
require that a family of parallel fissures does not contribute to v in the normal to the fissures direction.
These considerations yield the permeability

K — koI = C[(try)I — ) (32)

to within constant C of the hydrodynamic nature. Result equivalent to (32) was derived by Romm and
Pozinenko (1963) by lengthier means and without identifying the proper microstructural parameter y. The
derivation above was given by Kachanov (1975).

Proper microstructural parameter y identifies the principal axes of orthotropy of filtration (they are the
principal axes of 7). They are generally different from the principal axes of the elastic orthotropy (the
principal axes of a). The two orthotropies are coaxial only if all the fissures are identical—have the same
width w and the same area S.

6.3. Fracture—related properties of a brittle—elastic material containing multiple cracks

An important problem—still waiting for an in-depth analysis—is to identify proper microstructural
parameters that would characterize the proximity of the specimen to fracture.

Here, we briefly discuss the connection of such fracture-related characterization to the characterization
for the effective elastic properties. We note that the usual crack density, scalar (1) or tensor (3)—that is
appropriate for the effective elastic (and conductive) properties—cannot be used for this purpose. Indeed,

e The usual crack density is insensitive to the mutual positions of cracks, whereas the fracture-related prop-
erties (such as the maximal, among the crack tips, stress intensity factors, SIFs) are highly sensitive to
them.

e For a solid with strongly oblate, crack-like pores, the fact whether the crack tips are sharp or blunt makes
almost no difference as far as the effective elastic properties are concerned (as follows from Hill’s com-
parison theorem, Section 5). This difference is of obvious importance for the fracture-related properties.

7. Benefits of identifying the proper microstructural parameters

Identification of the proper microstructural parameters yields a number of benefits relevant for materials
science applications.

7.1. Guidance in intelligent reading of various microstructural data

This means identifying those microstructural features that have a dominant effect on the property
considered and distinguishing them from less important “details”. It can be applied to intelligent processing
of microphotographs. Examples are as follows.
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e The proper microstructural parameters for the elastic/conductive properties take the individual inhomo-
geneities’ contributions proportionally to their sizes cubed. This implies that small inhomogeneities can be
ignored, as compared to the dominant larger ones, unless they vastly outnumber the larger ones (for
example, by 2-3 orders of magnitude in the case their sizes are one order of magnitude smaller).

e For pores of strongly oblate shapes (aspect ratios smaller than 0.10-0.15), the knowledge of aspect ratios
is unnecessary in the context of the elastic/conductive properties, and their concentration can be charac-
terized by the crack density parameters. For a material with such pores, porosity is not a relevant param-
eter.

o The following details of microgeometries are unimportant, for the effective elastic/conductive properties:
o slightly “jagged” inhomogeneity boundaries;

o moderate non-planarity of cracks;
o sharp vs blunted corners of inhomogeneities.

o “Islands’ of partial contacts between crack faces are of primary importance: they produce a strong effect
on the elastic/conductive properties, even if they are very small (the effect can be incorporated into the
usual crack density parameters by appropriately reducing the “effective” crack sizes). Therefore, their
detection—in cases when their presence is suspected—is essential.

o The difference in effects on the elastic/conductive properties between the convex and the concave shapes
of inhomogeneities (of the same volume) may be substantial. Therefore, the convexity/concavity factor is
important.

e Knowledge of proper microstructural parameters substantially simplifies the reconstruction of 3-D
microstructural data from 2-D images. For example, in the cases of isotropic distribution of spherical
pores or cracks, the 2-D defect densities coincide with 3-D ones (Sevostianov et al., 2004).

7.2. Identification of the overall anisotropy

The effective elastic anisotropy is determined by the tensor rank and symmetry of the proper micro-
structural parameters. Below, we discuss the anisotropy issue for several microstructures. (For the con-
ductive properties, that always possess the orthotropic symmetry, relating the orthotropic constants to
microstructure is similarly rooted in microstructural parameters that are proper in the context of con-
ductivity.)

e For cracks in a 2-D isotropic material, the proper microstructural parameter is a symmetric second rank
tensor a. Therefore such a material is orthotropic—a somewhat counterintuitive result, since it applies to
an arbitrary orientation distribution of cracks (for example, to two families of parallel cracks inclined at
an arbitrary angle to each other).

e This result on orthotropy extends to a 2-D isotropic material with elliptical holes, since their concentra-
tion is characterized by a symmetric second rank tensor f given by (24).

e Orthotropy also holds for a 3-D isotropic material with circular cracks. Moreover, the orthotropy is of a
simplified type—it is characterized by only four independent constants (Kachanov, 1980). However, in
contrast with 2-D, these results are approximate, since they are based on neglecting a relatively small
contribution of fourth rank tensor (4). The same is true for a 3-D isotropic material with irregularly
shaped cracks, as long as the irregularities are random (not correlated with crack orientations and sizes).

e Orthotropy holds, with some approximation, for a material with 3-D spheroidal inhomogeneities in the
isotropic matrix (Sevostianov and Kachanov, 2002a,b). This follows from an approximate representa-
tion of the potential Af due to inhomogeneities in terms of a symmetric second rank tensor.

o For cracks constrained against the normal opening and for fluid-filled cracks, the fourth rank tensors (4) or
(16) emerges as a second, in addition to «, crack density parameter. In contrast with “freely opening”
cracks, its contribution cannot be neglected. This leads to violation of orthotropy.
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e In the case of anisotropic matrix with cracks or other inhomogeneities, the overall anisotropy is deter-
mined both by the matrix anisotropy (part f, of the potential in representation (6)) and by the orienta-
tion distribution of defects with respect to the matrix anisotropy axes (part Af of the potential). If
symmetries of these two parts are not coaxial, the overall anisotropy, generally, has no symmetry ele-
ments.

Remark. In general, if the proper microstructural parameter is a symmetric second rank tensor, the
material is not only orthotropic, but the orthotropy is of a substantially simplified type, characterized by a
reduced number of constants (the simplified orthotropy was discussed in more detail by Kachanov (1980)
and Kachanov et al. (1994)).

7.3. Design of microstructures for the prescribed effective properties

An example is given by plasma-sprayed thermal barrier coatings, that should have low thermal con-
ductivity in the direction normal to the coating and high elastic compliance in the direction parallel to the
coating. Such a design requires identification of the microstructural parameters that actually control the
said properties.

7.4. Recovery of information on microstructure from the effective properties

Such information recovery is, obviously, non-unique. Nevertheless, certain information can be extracted
(Sevostianov et al., 2001). Identification of the proper microstructural parameters is crucial, since the
recovered quantities are these very parameters. In the case of the isotropic material, the elasticity data
provide more information than the conductivity data. Indeed, in the conductivity problem, an isotropic
mixture of diverse shapes can be replaced by an appropriate concentration of spheres, whereas in the
elasticity problem, there is no such equivalence (Fig. 3). Hence, no information on inhomogeneity shapes
can be recovered from the isotropic conductivity data, but certain shape information can be recovered from
the isotropic elasticity data.

7.5. Establishing explicit elastic—conductive cross-property connections

Establishing explicit elastic—conductive cross-property connections is, perhaps, one of the most signifi-
cant benefits of identifying the proper microstructural parameters. This issue is discussed in the section to
follow.

8. Proper microstructural parameters imply cross-property connections

Cross-property connections—when they are possible—interrelate changes in two different physical
properties (say, elastic and conductive ones) due to the presence of inhomogeneities. The possibility of such
connections is actually rooted in similarity between the proper microstructural parameters for these two
properties.

As mentioned in the Introduction, proper microstructural parameters are generally different for different
physical properties. The differences can be essential. For example, for a material with crack-like fissures, the
effect of fissure openings on the elastic properties is minor, whereas the transport properties are highly
sensitive to them. Therefore, parameters used for these two properties have to be essentially different, and a
connection cannot, generally, be established between the two properties.
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As far as elastic and conductive properties are concerned, the proper parameters for these two properties
are either identical or similar (in spite of differences in their tensor ranks in some cases, they have similar
dependencies on sizes and shapes of inhomogeneities). This leads to explicit cross-property connections
obtained by eliminating the mentioned parameters. Depending on the extent of the similarity, the con-
nections may have different forms.

(A) If the mentioned parameters are identical (lines 1-3, 8, 9 of Fig. 2), the cross-property connections
are exact and do not depend on any microstructural information. An example is given by 2-D cracks of any
(generally anisotropic) orientation distribution. In this case, the connection between effective Young’s
modulus E; in a certain direction x; and effective conductivity k; in the same direction has the form

Ey—E; ko — ki
0 1:20 i

E; k; (33)

(Ey, ko are constants of the bulk material). This connection does not contain any reference to the density of
cracks or their orientation distribution.

(B) In certain cases, the microstructural parameters for elasticity require more parameters, or parameters
of a higher tensor rank, as compared to conductivity. At the same time, both properties have identical
dependencies of the defect sizes and somewhat similar dependencies on defect shapes. Then the cross-
property connections may hold only approximately and may have some sensitivity to microstructural
information. The following situations can be identified:

e The elastic properties require an extra parameter (lines 4, 7 of Fig. 2). The cross-property connection
(obtained by eliminating the parameter that is common for both properties) will be sensitive to the
microstructural information expressed by this parameter.

This situation is illustrated by the 2-D example of elliptical holes, of an arbitrary distribution over
orientations, aspect ratios and sizes (line 7 of Fig. 2). Microstructural parameter that is common to both
elastic and conductive properties is the second rank symmetric tensor

1 2 2 i
B = Z(a nn+ b"mm) (34)
where a, b are ellipses’ semiaxes, n,m are unit vectors along them and 4 is the area of averaging. However,
the elastic properties require an extra parameter—scalar porosity p = (n/4) >_(ab)'. This has interesting
physical implications that are best seen in the simplest case of overall isotropy (random orientations of
ellipses). In this case, the elastic properties are expressed in terms of two scalar parameters, porosity p and
“average eccentricity” ¢ = (1/4) > [(a — b)*)" (or, alternatively, r = (1/4) 3 (a* + b*)' = 2p + q. Namely,
for the effective Young’s and bulk moduli we have

E 1 K 1

- - . —_— 35

Ey 1+p+r’ Ky 1+r (35)
The effective conductivity requires only one parameter, 7:

k 1

B 36

ke 1+r (36)
so that, although the effective conductivity can be uniquely related to the bulk modulus:

k K

- 37

ko Ko (37)

relating it to Young’s modulus
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E__ 1 (38)
Ey (ko/k)+p

requires knowledge of a microstructural parameter—porosity p.

o Elastic properties require a fourth rank tensor parameter as compared to a second rank one for conduc-
tivity (lines 4, 6, 10 of Fig. 2). Then the cross-property connections are possible if the fourth rank param-
eter can be replaced, with some approximation, by a second rank one, as discussed throughout Section 4.
An example is given by 3-D circular cracks when the exact connection (33) changes to an approximate one

Eo—E _4(1-v) k—ki (39)
E,- 2— Vo ki

Generally, the accuracy of such connections depends on the average shapes of inhomogeneities and on
Poisson’s ratio vy of the matrix (see Sevostianov and Kachanov (2002a,b) for cross-property connections
for materials with spheroidal inhomogeneities).

Remark 1. In connection with the last statement, we mention a related result of Zimmerman and Lutz
(2004) that connects the effective bulk modulus of the isotropic material (randomly oriented spheroidal
pores) and the effective conductivity, in the case v = 0. The results above appear to put his result in a more
general context, since in the case vy = 0 for the spheroidal pores, the fourth rank parameter can be replaced
by a second rank one exactly in the general anisotropic case (and, if vy # 0, the error can be estimated, see
Shafiro and Kachanov, 1999).

Remark 2. In certain cases, a cross-property connection can be established in spied of the fact that the
fourth rank tensor determining the elastic properties cannot be replaced by a second rank one. For
example, if the case of parallel fluid-filled cracks (situation typical for hydrothermal aging of thin-walled
structures), fourth rank crack density tensor may be represented as (1/V) S (a’nnnn)’ = aa/p (where aa is a
dyadic product of second rank crack density tensors and p is scalar crack density. This results in a non-
linear cross-property connection, Sevostianov et al., 2003).

9. Fabric tensor approach

Give me five adjustable parameters and I will draw an elephant; give me a sixth and I will make its trunk wave—L. Landau

The terminology. The term “fabric” has been used in literature in different senses. Therefore, we start
with clarification of the terminology.

e In a loose sense, “‘fabric” may simply mean that a certain texture is present. For example, in structural
geology it often indicates preferred crystallographic orientations (Law, 1990).

e The term ““fabric tensors” may indicate a specific technique of quantitative characterization of orienta-
tion distributions of various geometric features (Kanatani, 1984).

e In the context of granular materials, “fabric tensors™ are introduced in such a way that they explicitly
reflect orientations of grain contacts and, possibly, other microstructural features (Satake, 1978 and
works that followed, e.g. Oda et al., 1982). In the terminology of the present paper, this constitutes
the micromechanical approach (rather than the fabric tensor one). Therefore, the comments made below
do not apply to this case.

Most often, however, this terminology indicates a certain approach to the effective elastic properties that
is discussed in the text to follow. (Note that a similar approach has also been applied to anisotropic strength
criteria, sece Cowin, 1986.) Here, we focus on ““fabrics” constituted by inhomogeneities (cracks, pores,
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foreign particles) in a matrix. Similar arguments may be applied, though, to “fabrics” of other morpho-
logies.

This approach has been taken by several authors. Leaving aside works on granular materials (for the
reason indicated above), we mention the works of Cowin (1985), Litewka (1985), Talreja (1994) (where the
matrix containing inhomogeneities is assumed anisotropic), Zysset and Curnier (1995) and Kuna-Ciskal
and Skrzypek (2004) for the latest one.

A number of works on the elastic properties of trabecular bone belong to this framework, starting,
probably, with work of Cowin and Mehrabadi (1989); see Hamminga et al. (2003) for the latest one. We
note that, as far as (highly porous) trabecular bone is concerned, modeling its microstructure by a con-
tinnum with voids may not be the best route. Therefore, restrictions imposed by consistency with the
known results on elastic continua with pores/cracks that are discussed below may not apply to such bone;
instead, it may be more appropriate to require consistency with micromechanics of cellular materials.

One of the present authors (MK) has also taken this approach in his earlier work (Vakulenko and
Kachanov, 1971) where the basic formulas (40) and (41) were used in the micromechanical context, per-
haps, for the first time. The fact that the “fabric tensor” was introduced there in connection with cracks is
irrelevant in the context of the present discussion, since constructions (40) and (41) are independent of the
microstructural interpretation of the “fabric tensor™.

The basic logic is as follows.

1. Tt is postulated that a microstructure is characterized by a certain “fabric” tensor 4 of an a priori pos-
tulated rank. Most often, it is taken as a symmetric second rank tensor (the possibilities of higher rank
fabric tensors, or more than one fabric tensor, have also been discussed; the basic scheme would then
remain the same, but the algebraic expressions would involve even larger numbers of terms and param-
eters).

2. The effective elastic potential is treated as a function of two variables: stress ¢ and tensor 4 : f = (o, A).
In equivalent formulations, the potential in strains, /' = f'(¢, A) is considered, or the effective compliance
(or stiffness) tensor is constructed as a function of 4.

3. If the matrix material is isotropic in absence of inhomogeneities, then ¢ and A4 enter f only through their
invariants, including the joint ones (since any orthogonal transformation, for example, rotation, applied
to both ¢ and A should not affect the potential). Using general tensor representations (see, for example,
Green and Adkins, 1960; or Spencer, 1971) and imposing the requirement that f is quadratic in stresses
(linear elasticity), yields the potential as a sum of nine terms:

f(6,4) = Ci(tre)’ + Cr6 : 6 + C3(6-6) : A+ Cy(tre)e : A+ Cs(o: A)> + Cs(o - 6)
(A-A)+Clo:(A-A) + Cstrofo: (A-A)|+ Colo: (A- Ao : A (40)

(a dot and a colon denote contraction over one and two indices). This representation contains nine
factors C|9. Each of them is a function of three variables—invariants of 4.
4. Since this representation contains nine terms, with uncertain functions Cy ¢, various simplifications have
been suggested. Most of them fall into one of the two categories:
e Linearization of /' = f(a, A) with respect to 4. A possible justification is that the linearity should hold,
at least, in the limit of low density of inhomogeneities (although this argument is not fully clear, since 4
is not necessarily identified as the proper parameter of concentration of inhomogeneities). This yields:

fle,4) = (C, 4+ CltrA)(tre)” + (Cy + CitrA)e : 6 + C3(6 - 6) : A+ Cy(tra)e : A (41)

where C’, C"-factors are constants. Note that, had tensor A been a proper parameter of concentration of
inhomogeneities, the linearized version (41) would have represented simply the low concentration limit.
Since, however, this is generally not the case, such an association cannot be made.
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o It is suggested that the C-factors can be treated as constants. This is done either (1) by claiming that
they are “material constants™ (this claim is discussed below), or (2) as an approximation, that is jus-
tified by the ability to fit specific sets of experimental data (note that a number of adjustable param-
eters required is usually rather large; for example, 18 adjustable parameters were used in the work of
Hamminga et al., 2003).

5. If the matrix material is anisotropic, the number of terms in the potential—and, therefore, the number of
C-factors—increases further. Indeed, in this case ¢ and A4 enter f through their invariants with respect to
the group of symmetry of the material (rather than the full orthogonal group). This results in larger num-
ber of terms in f(a, A). For the orthotropic matrix, this number is 14, even in the linearized formulation
(41) (Talreja, 1994). We note that the question whether a second rank tensor A4 is adequate at all, as a
parameter of microstructure is even more complex in the case of an anisotropic matrix. For example,
whereas the concentration of 2-D elliptical holes in the isotropic matrix is adequately characterized by
a second rank tensor (see formula (23)), their concentration in an anisotropic matrix is not (it requires
a fourth rank tensor).

Discussion of the approach. The approach is aimed at a difficult problem of key importance—Ilinking
anisotropic microstructures to the effective elastic properties. However, the way it is done raises a number
of objections, as follows.

1. Linking the effective properties to microstructure. For this purpose, the key problem is to explicitly link A
to relevant microstructural features. This would involve (1) identifying those features (concentration of
inhomogeneities, their shapes and orientations) that have dominant effects on the elastic properties;
(2) quantifying these effects and incorporating them into 4. Most often, however, no such attempt is
made. In several works, this link is suggested in a somewhat arbitrary way, without a micromechanical
justification.

That such a linkage is non-trivial, is clearly shown, in the context of trabecular bones, in the review
of Odgaard (1997). Several possible—and quite different—Ilinkages between bone’s microstructure and
the fabric tensor are outlined in this work; they yield different fabric tensors. The problem of making
a choice between these methodologies appears to remain unresolved. Note that one of these choices—
based on the “mean intercept length”—that seems to be used most often (see, for example, Hamminga
et al., 2003) produces isotropic fabric tensors in certain cases when the microstructure is clearly aniso-
tropic.

2. C-factors. The presence of the mentioned nine functions (or six constants, in the linearized version) cre-
ates a major uncertainty—it appears that these factors cannot be specialized on the theoretical grounds
(except for the requirement that, at 4 = 0, the potential should reduce to the usual elastic potential of the
matrix material). These uncertainties are the price paid for the fact that 4 is not explicitly linked to rel-
evant microstructural features, i.e. for bypassing the micromechanical analysis.

It is sometimes hypothesized that C-factors are “material constants”. Aside from the fact that these
factors do not seem to represent any fundamental property of the matter, the following comments should
be made. Had the C-factors been constants for a given material, formula (40) would have covered the limit
of low concentration of inhomogeneities as a special case. From this point of view, let us examine two 2-D
cases: the one of cracks and the one of elliptical holes, both in the limit of small concentration. In the first
case, result (14) means that, of all the terms in (40), only the first three have non-zero C-factors; Cy 4 are
zeros. Constancy of C’s would then imply that C, ¢ remain zeros for the elliptical holes as well—in con-
tradiction with result (23) that shows, for example, that C; # 0 (and that the value of C, should be
changed).

Note that the hypothesis on constancy of C-factors has sometimes been used in the context of cracks
only. In this narrower context, the structure (40), having to be in agreement with rigorous results for low
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crack densities, implies that A4 is the tensor crack density parameter (3) and that C-factors are identified

from formulas (14) or (15). Then, constancy of C-factors would imply that the results obtained in the non-

interaction approximation remain valid in general.

Thus, C-factors are not constants but must be treated as functions of invariants of A that have to be
experimentally measured. This requires 4 to be explicitly linked to microstructural features in a micro-
mechanically justified way, i.e. of several possible linkages (of the kind overviewed by Odgaard, 1997)
the one that properly reflects the effect of the features on the overall property is chosen. Otherwise, C’s will
not be unique functions of their arguments. This brings us back to the focal point of micromechani-
cal analyses—identification of contributions of individual micromechanical features to the overall prop-
erties.

3. The rank of tensor A is postulated a priori. Actually, this is not a trivial matter. For example, microme-
chanical analysis (Section 4) shows that for cracks in a 3-D solid, retaining second rank tensor « as a sole
crack density parameter is a good approximation (with accuracy dependent on Poisson’s ratio). How-
ever, in cases of fluid-filled cracks, or cracks constrained against the normal opening, a should be sup-
plemented by fourth rank tensor (18). For the spheroidal inhomogeneities, whereas second rank tensor
characterization is satisfactory in most cases, fourth rank tensor becomes necessary at certain combina-
tions of the spheroid eccentricities and Poisson’s ratios. These facts cannot be predicted in the framework
of the “fabric” tensor approach.

4. Overlooking possible simplifications. If the rank of A is postulated correctly, the general structure (40) is,
of course, correct. However, one may not be able to identify important simplifications.

(A) For cracks, in those cases when second rank crack density tensor « is adequate, the potential actually

contains only one joint invariant, (¢ - 6) : a of tensors ¢ and a, see (14).

(B) A substantial reduction of the number of independent constants (four constants, instead of nine, in
the case of cracks) cannot be predicted.

(C) In cases when both the second and the fourth rank tensors are needed, the general structure of f pro-
duced by the fabric tensor approach would be quite complex. However, the actual expression for f
may be much simpler (formulas (15) and (16)).

(D) In the case of an anisotropic matrix, the general fabric tensor representations contain a large number
of terms. Again, the micromechanical analysis shows that the potential may actually be much sim-
pler. For example, for a 2-D orthotropic matrix with arbitrarily oriented cracks, the change of po-
tential due to cracks Af reduces to one term only, formula (22).

Summing up, it appears that the basic result of the approach reduces to the following statement: if a
certain “fabric” tensor A is postulated to characterize the microstructure, then its rank and symmetry
determine the overall anisotropy.

10. Discussion and conclusions

We focus on microstructures that comprise a mixture of inhomogeneities of diverse shapes and orien-
tations. The problem of effective properties is closely related to the one of quantitative characterization of
such microstructures—identification of microstructural parameters, in whose terms the said properties are
to be expressed.

The proper microstructural parameters should represent the individual inhomogeneities in accordance
with their contributions to the effective property. Therefore, such parameters are, generally, different for
different physical properties (elastic, conductive, transport).

The key problem in their identification is to find the contribution of one isolated inhomogeneity to the
property considered, as a function of its shape and orientation. This is, generally, a challenging problem; we
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overview the progress that has been made in this direction. For anisotropic microstructures, we identify the
cases when second rank tensors are sufficient and the cases when fourth rank tensor parameters become
necessary.

The microstructural parameters, that are identified this way, may be non-trivial, even in cases of overall
isotropy they may not reduce to volume fractions. A relatively simple case of a 2-D material with randomly
oriented elliptical holes is an example. Various shape “irregularities” further complicate the matter—the
irregularity factors of dominant importance have to be distinguished from the ones of minor importance. It
is found, for example, that “islands™ of partial contacts between the faces of crack-like pores constitute a
microstructural feature of primary importance; we show how to incorporate this factor into the micro-
structural parameters.

This approach, based on analyses on individual inhomogeneity contributions, can be called “micro-
mechanical”. Its advantages are as follows.

e Coverage of microstructures that involve mixtures of inhomogeneities of diverse shapes and orientations.

o ““Intelligent processing” of various microphotographical data, namely, distinguishing between the micro-
structural features of primary importance (for example, small “islands” of partial contact between crack
faces) from the ones that can be ignored (for example, “‘jaggedness” of inhomogeneity boundaries or
sharpness of various corner points).

o The overall anisotropy is established—it is determined by a rank and symmetry of the proper tensor
microstructural parameter.

o Explicit cross-property connections can be established between two physical properties (elasticity—con-
ductivity, for example), if the proper parameters for these properties are sufficiently similar.

We contrast the micromechanical approach with the “fabric’ tensor one, that is based on postulating, a
priori, that a “fabric” tensor of a certain rank characterizes the microstructure. In most cases, this tensor is
not linked, in a quantitative way, to relevant microstructural features (in several works on a trabecular
bone, linkages have been suggested, but not in a unique, or a micromechanically justified way). The effective
properties are then constructed using general tensor representations. This produces of a large number of
uncertain factors—coefficients in these representations. They cannot be treated as material constants (and
are, generally, functions of three, somewhat uncertainly defined, arguments). Yet another difficulty is that
the rank of a tensor that characterizes a microstructure is actually not a trivial matter (for example, it may
not be clear, without micromechanical analyses, when second rank tensors are sufficient and when the
fourth rank ones are necessary).

We also mention rapid advances in computational techniques whereby the effective properties are di-
rectly computed for any particular microgeometry. Such computational tools are very valuable, since they
allow one to directly examine various microstructural features and to solve numerically the interaction
problem for particular arrangements of inhomogeneities. Their limitation is that the results they produce do
not constitute a physical theory. More specifically, they do not provide guidance in recovery of information
from various effective property data, in design of microstructures for given effective properties or in
establishing cross-property connections.
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